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Annotation

A new consistent derivation of the formula for the modulus of the proton-
proton scattering amplitude is given, which is designed to retrieve informa-
tion on the strong interaction phase due to the Coulomb-nuclear interference.
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Chapter 1

Introduction

The thesis concerns one special aspect of the problem of phase of the strong
("nuclear") interaction scattering amplitude, TN(s, t), with

√
s the c.m.s col-

lision energy and t the square of the transferred momentum. Physical sig-
ni�cance of the scattering phase for understanding the space-time picture of
the high-energy scattering was discussed in Ref.[1].

The problem is that if only strong interaction would occur then the phase
could not be detected because we would deal with the modulus | TN | only
as the measured cross sections are proportional to | TN |2.

However, charged particles experience not only nuclear (strong) but also
electromagnetic, weak and gravitational interactions. The last two are too
weak and can be neglected in all realistic conditions while the electromagnetic
one may become even stronger than the strong interaction if to consider low
enough transferred momenta (Coulomb scattering)1.

Thus, an essential interference takes place only between strong (N) and
Coulomb (C) contributions. As we know well the Coulomb part, we can try
to extract from the data an information on phase.

Normal way: �rst, one considers the region of transferred momenta where
Coulomb contribution is negligible (due to fast decrease of form factors)
and �xes | TN | by a suitable �tting procedure. Then this is used in
the region of low transferred momenta where both strong and electromag-
netic contributions are essential and where the strong interaction phase,

1In general electromagnetic interaction reveals itself (beyond Coulomb exchanges) in
non controllable radiation of soft photons which makes impossible pure elastic scattering
of charged particles. With account of virtual exchanges this e�ect gives an inclusive
process where energies of undetected quanta are con�ned to the energy resolution of the
colliding charged particles and is quanti�ed in a well-known damping factor depending
on the transferred momenta [2].In our case of very low transferred momenta this factor is
practically equal to unity and we don't take it into account.
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Arg TN(s, t), reveals due to the interference. As this Coulomb-nuclear inter-
ference(CNI)occurs in quite a narrow region of very low transferred momenta
normally the information on the phase concerns ArgTN(s, 0) only. When pro-
cessing the data the quantity

ρ = cotArgTN(s, 0)

is usually presented. The quantity ρ is related to the retrieval of the total
cross-section (see the next Section for more detail.)

It is important to clearly realize that these �experimental� data on ρ are
only half those, since the need to preliminary know the amplitude modulus
implicitly introduces dependence on the model that was used to process the
data with t outside the CNI region.

The retrieval of ρ would be a routine operation if one would possess a
consistently derived and universally recognized formula which combines both
strong (N) and Coulomb(C) interactions in a single amplitude TC+N(s, t).

However, that is not the case. Till the recent times several formulas for
TC+N(s, t) were in use "on the market". Most popular at the moment are for-
mulas due to an early paper by H.Bethe [3](with several later modi�cations)
and by R.Cahn [4](with later modi�cations due to Ref.[5]). Both formulas
were contested in Ref.[6] where inconsistencies of papers [3],[4] and [5] were
identi�ed and a corresponding modi�cation of formulas from Refs.[4],[5] was
given. As was shown in Ref.[7], the use of the modi�ed formula leads to values
of ρ di�erent than those obtained with help of formulas from [3],[4],[5].

The motivation for the present work is that all mentioned above papers
dealt with impact parameter representation which, in some respects, is not
quite rigorous and thus a need in more rigorous derivation of the results of
Ref.[6], if to take into account the conceptual importance of the topic, seems
quite relevant and mandatory.

The approach used in this work is based on application of expansions in
Legendre polynomials which have a rigorous mathematical ground.

Before proceeding to a straightforward presentation of our theoretical
derivations and results, we found it useful to give a concise overview of the
experimental results related to the topic of the present dissertation.
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Chapter 2

Experimental results

As was said above, the ρ parameter value can be obtained from the di�erential
cross-sections by the virtue of the e�ects of Coulomb-nuclear interference
(CNI). This parameter is important for more precise determination of the
total cross-section. Here we limit ourselves by commenting only experiments
made by the collaboration TOTEM at the LHC at the energy 13 TeV [8].
In Ref.[8] the following formula was taken for the cross-section due to the
Coulomb scattering only

dσC
dt

=
1

16πs2
| TC |2=

4πα2

t2
F 4(t) (2.1)

where α is the �ne structure constant, F (t) is the experimentally determined
electromagnetic form-factor. In the paper [8], several choices for the form-
factors have been examined and no di�erence has been noticed in the result.
The modulus of nuclear amplitude TN(t) at low |t| which was chosen in [8]
is given by the following expression

|TN(t)| =
√
s

π

p

}c
√
aexp(

Nb∑
n=1

bnt
n) (2.2)

where
a = dσN/dt |t=0 .

The parameter b1 is responsible for the leading exponential decrease, the
other bn parameters were added to describe small deviations from the pure
exponential. Extending the nuclear amplitude to higher values of |t| is worth
because the CNI formula (Eq.(2.4) below) involves integrations. The nuclear
amplitude at larger |t| was modelled by a function that gives the dip-bump
structure observed in the data in the region | t |≈ 0.5GeV 2 (Fig.2.1).
The intermediate |t| part was provided with continuous and smooth inter-
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Figure 2.1: Di�erential cross-section of elastic pp scattering beyond the CNI
region(for details see Ref.[8]).

polations between low and high |t| regions.
It has been noticed in [8], however, that "changing high |t| part within

reasonable limits has almost no impact on the results".
The di�erential cross-section zoomed in the region of low t, where CNI is

essential,is depicted at Fig.2.2
It was mentioned in [8] that several parametrisations have been considered

for the phase of the amplitude of nuclear interactions, both t dependent and
constant. However, "no dependence on this choice was observed and therefore
only the constant phase

ArgTN(t) =
π

2
− arctanρ = const (2.3)

was retained".
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Figure 2.2: TOTEM �t to the di�erential cross-section in the region of CNI.

In paper[8] there was used the interference formula given in [5]:

dσC+N

dt
=
π(}c)2

sp2
|αs
t
F 2 + TN [1− iαG(t)]|2,

G(t) =

∫ 0

−4p2
dt′log

t′

t

d

dt′
F 2(t′)

−
∫ 0

−4p2
dt′(

TN(t′)

TN(t)
− 1)

I(t, t′)

2π
,

I(t, t′) =

∫ 2π

0

dφ
F 2(t′′)

t′′
,

t′′ = t+ t′ + 2
√
tt′cosφ.

(2.4)

which is quite similar to that given in Ref.[4].
For retrieving the total cross-section there was used the formula following

from the optical theorem:

σ2
tot =

16π(}c)2

1 + ρ2
a (2.5)

The use of Eqs.(2.4) and (2.5) for analysis of the TOTEM experimental data
on dσC+N/dt resulted in the following values of parameters ρ and σtot in
proton-proton collisions at 13 TeV:

ρ = 0.10± 0.01 σtot = 110.5± 2.4mb. (2.6)
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Such values, mostly that of ρ, were interpreted in the TOTEM publication
[8] as

1.the evidence of "a C-odd three-gluon compound state"

and
2. the indication of a slow down of the growth rate of σtot .
General view of the total, elastic and inelastic cross-section is presented

at Fig.2.3

Figure 2.3: Energy evolution of the total, elastic and inelastic cross-
section at

√
s = 10 ÷ 13000 GeV. The solid line is due to the COMPETE

parametrization[9].

Energy evolution of the ρ is presented at Fig.2.4
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Figure 2.4: Energy evolution of the ρ parameter at
√
s = 10 ÷ 13000 GeV.

The solid line is the prediction of the COMPETE parametrization [9].

These results and conclusions from them made in [8] initiated a vivid
(often quite critical) discussion resulted in several tens of publications.
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Chapter 3

Proton-proton scattering
amplitude with account of
Coulomb exchanges. General
Formula.

Hereinafter, as the scattering variable, we use the cosine of the scattering
angle in the center of mass system.

z = cosθ = 1 +
t

2p2

The strong interaction elastic scattering amplitude TN(s, z) can be expanded
into the series in Legendre polynomials

TN(s, z) =
∞∑
l=0

(2l + 1)Pl(z)T lN(s)

which converges homogeneously and uniformly inside the elliptical region [10]

| 1− z | + | 1 + z |≤ 2x0(s)

where the value of the major semi axis x0 depends on the masses of colliding
particles and generically behaves at high energies as x0 ≈ 1 + const/s.

In our normalization, the Holtzmark expansion in Legendre polynomials
taking into account the symmetry of the scattering for θ → π − θ have the
form (Our normalization here di�ers from that used in Chapter 2 by factor
2.):

TX(s, z) =
1

2

∞∑
l=0

(2l + 1)
1 + (−1)l

2
Pl(z)

1

2i
(e2iδ

l
X(s) − 1) (3.1)
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where X = (C + N), C,N and δX is the partial wave phase shift due to
exchange X. In this normalization the di�erential cross-section takes the form

dσC+N

dt
= 4π

|TC+N |2

sp2

Since the di�erential cross-section is de�ned only by modulus of amplitude
TC+N , we will continue to deal with it. The relative phases of the Coulomb
and strong amplitude of course a�ect its value.

Taking into account that all the results for experimental research on "
forward/backward scattering" i.e. for θ = 0 or π, are in fact the results of
extrapolation z = cos θ → ±1, and using the identity

∞∑
l=0

(2l + 1)Pl(z)Pl(z
′) = 2δ(z − z′)

we obtain from formula (3.1) the following fundamental relation,

|TC+N ||z|6=1 = |EC(z)

2i
+

1

4

∫ 1

−1
dz′dz′′K(z, z′, z′′)EC(z′)TN(z′′)|, (3.2)

where,

EC(z) =
1

2

∞∑
l=0

(2l + 1)Pl(z)
1 + (−1)l

2
e2iδ

l
C

K+(x, y, z) =
∞∑
l=0

(2l + 1)Pl(x)Pl(y)Pl(z) =
2

π
(1 + 2xyz + x2 − y2 − z2)(−1/2)

TN(z) =
∞∑
l=0

(2l + 1)Pl(z)
1 + (−1)l

2

(e2iδ
l
N − 1)

2

here,

δlC =

∫ 1

−1
dzTBornC (s, z)Pl(z), (3.3)

where,

TBornC (s, |z| → 1) ≈ −α
2

F 2(−2p2(1− |z|))
1− |z|+ λ2/2p2

(3.4)

F (t(u)) is the electromagnetic form factor of proton, and λ is a �ctitious
mass of photon as a regulator of infrared divergence.
As we can see from (3.2) by condition |z| 6=1, singular dependence on λ gets
factorized.
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If we represent δlC in the form

δlC =

∫ 1

−1
dzTBornC (s, z)[Pl(z)− 1] +

∫ 1

−1
dzTBornC (s, z) = δ̂lC + δλ

where,

δλ =

∫ 1

−1
dzTBornC (s, z)

then,

|TC+N ||z|6=1 = |(e2iδλ)T̂C+N | = |
ÊC(z)

2i
+

1

2

∫ 1

−1
dz′dz′′K(z, z′, z′′)ÊC(z′)TN(z′′)|,

(3.5)
here,

ÊC(z) =
1

2

∞∑
l=0

(2l + 1)Pl(z)
1 + (−1)l

2
e2iδ̂

l
C

In equation (3.5) we may take the physical photon mass value λ = 0, so that
the term |TC+N ||z|6=1 does not contain non-physical parameters.

Thus, formula (3.5) is an exact (all orders in α) expression for the mod-
ulus of the physical scattering amplitude of identical charged particles with
account of Coulomb - nuclear interference. After having chosen a particular
model for TN and F (t) equation (3.5) can be used for estimating the value
of the di�erential cross-section. This mainly concerns the region of trans-
ferred momenta of the order 10−3 - 10−4 GeV 2, where Coulomb - nuclear
interference becomes noticeable.

However, in practice one normally uses one or another approximation in
α. This will be the subject of our consideration in Chapters 4 and 5.
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Chapter 4

Coulomb - nuclear interference in
the lowest order in α.

Quite often �rst-order approximations in α are used ([4],[5]). It was shown
in Ref.[6] that expansion of Eq.(3.5) leads to the expression which does not
contain an extra term which was obtained in corresponding approximation
considered in Ref.[5]. This result was obtained with use of the impact param-
eter representation which holds only approximately (for very high energies).
In this Chapter we will check the result obtained in Ref.[6] with help of rig-
orously proved expansions in series in Legendre polynomials.
Function ÊC(z) has the following form when expanded in the series in α:

ÊC(z) = δ(z2−1)+2i

∫ 1

−1
dz′TBornC (z′)(|z′|δ(z′2−z2)−δ(z2−1))+O(α2) (4.1)

for |z| 6= 1 this expression takes the form:

ÊC(z) = 2iTBornC (z)

general result:

|TC+N ||z|6=1 = |TBornC (z) + TN(s, z)− i
∫ 1

−1
dz′JC(z, z′)[TN(s, z)− TN(s, z′)]|,

(4.2)
where,

JC(z, z′) =

∫ 1

−1
dζK(z, z′, ζ)TBornC (ζ) (4.3)

This approximation is more convenient for phenomenological purposes.
For point-like charges ( i.e. F = 1 )

JC(z, z′) = −α
2

(
1

|z − z′|
+

1

|z + z′|
)

13



In (4.2) the singularity of general function 1
z±z′ is eliminated by the actual

regularization with the help of amplitude TN(s, z), performing the role of test
function of z, so far TN(s, z) ∈ C∞([−1− ε, 1 + ε]) for |z| ≤ 1.
In applications, the use of the scattering angle has long since given way to
invariant variables t(u). Therefore, we present our result (4.2) in terms of
invariant variables.
The most relevant invariant variable accounting for the forward-backward
symmetry of the amplitude is the square of the 2D vector q = (q1, q2) trans-
verse to the beam direction

q2 = q21 + q22 = ut/4

In these variables Eq.(4.2) acquires the form ( we omit the explicit indication
of the energy argument, s):

|TC+N ||q|6=0 = |TBornC (q2)+TN(s, q2)+iα

∫ ∞
0

dq′2
F 2(q′2)

q′2
[TN(q2)−T̄N(q2, q′2)]|

(4.4)
where,

TBornC (q2) = −αsF (q2)

2q2

and

T̄N(q2, q′2) =

∫ 2π

0

dφ

2π
TN(q2 + q′2 − 2qq′cosφ)

Thus, our formula (4.4) veri�es the result of the �rst order from [5] in the
positive.
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Chapter 5

Coulomb - nuclear interference:
the importance of second order
terms.

As already mentioned above, the 1st order approximations for TC+N were
used for extraction of the parameter ρ(s) = ReTN(s, t = 0)/ImTN(s, t = 0)
from the data on dσ/dt ∼ |TC+N |2 [8].
The 1st order approximation obtained in Ref.[6] essentially di�ers from that
from Ref.[5] (note that in Ref.[8] the results of Ref.[5] was used).
It is, however, clear from the point of view of simple mathematical consistency
that if one considers the 1st order approximation for TC+N then the same 1st
order approximation should be used for its modulus, |TC+N | as well.
It is evident also that if we take two amplitudes T ′C+N and T ′′C+N which di�er
from each other by a phase factor only, i.e.

T ′′C+N = eiαLT ′C+N (5.1)

where L is an arbitrary real function of s and cosθ (in physical regions of
both variables), then

|T ′′C+N | = |T ′C+N |.

Thus, both amplitudes are physically equivalent and anyone of the two can
be used. Let us now take the 1st order approximations:

T ′C+N = TN + αA′

T ′′C+N = TN + αA′′

It follows from (5.1) that
A′′ = A′ + iLTN (5.2)
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Thus, if two amplitudes T ′C+N and T ′′C+N have their 1st order approximations
which are di�erent but are related by relationship (5.2) then these amplitudes
are equivalent, i.e. their moduli coincide. We have, nonetheless, to keep in
mind that this is guaranteed in the 1st order approximation only.
Let us notice that the di�erence in the 1st-order approximations to TC+N

presented in Ref. [6] and [5] is exactly of the type (5.2).
However, the values of the parameter ρ(s) extracted from the data with help
of these amplitudes using the same nuclear amplitude TN appeared essentially
di�erent [7]. What is the reason for such a discrepancy?
The reason is that these amplitudes were used beyond the limits of validity
of their approximations. In fact, as was mentioned above, the observed cross-
sections are proportional not to |TC+N | but to |TC+N |2. When extracting the
parameter ρ the terms authors of Ref.[6] and [8] obtained |TC+N |2 squaring
only the 1st order approximation for |TC+N | without accounting for terms ∼
α2. Such an action is certainly mathematically inconsistent. To be consistent,
one must retain terms ∼ α2 in the expansion of the amplitude itself (or of
its modulus).
Let us illustrate the said. Let us use the 1st-order expansion

TC+N = TN + αA

for obtaining |TC+N |2. We get

|TC+N |2 = |TN |2 + α2Re(T ∗NA) + α2|A|2.

Let us now take a more exact expansion of TC+N :

TC+N = TN + αA+ α2B

We get now retaining � as it should be � the terms not higher than ∼ α2

|TC+N |2 = |TN |2 + α2Re(T ∗NA) + α2(|A|2 + 2Re(T ∗NB))

We see that uncritical use of the 1st order expressions leads to missing terms
α22Re(T ∗NB) which can be, dependent on the considered region of the kine-
matical variables, quite compatible with old terms α2(|A2|). Note that this
term contains the contribution from the pure Coulomb scattering which dom-
inates only at extremely low values of transferred momenta of order ≤ 10−4

GeV 2.
In which case two amplitudes T ′C+N and T ′′C+N will be equivalent at the level
of the 2nd order accuracy?
The following two conditions should now hold:

A′′ = A′ + iLTN (5.3)
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B′′ = B′ + iLA′ − 1

2
L2TN (5.4)

One can show [11] that while α expansion coe�cients of the amplitudes used
in Refs.[6] and [5] obey to Eq.(5.3) they do not obey to Eq.(5.4).

Now we demonstrate the explicit expression of the second-order coe�-
cients in the expansion

TC+N = TN + αA+ α2B

The �rst order coe�cient was already presented and discussed in Chapter 4.
So we concentrate on the coe�cient B.
It is much more complicated that the coe�cient A which is of a relatively
simple form:

αA = TBornC (z)− i
∫ 1

−1
dz′JC(z, z′)[TN(s, z)− TN(s, z′)]

After quite cumbersome transformations, the second order term can be cast
in the form

α2B =
i

2

∫ 1

0

dz′′dz′K(z′, z′′, z)TBornC (z′)TBornC (z′′)− TBornC (z)[TBornC (z′) + TBornC (z′′)]

−
∫ 1

−1
dz′[M(z, z′)TN(s, z′)−N(z′)TN(s, z′)]

(5.5)

Here

M(z, z′) =

∫ 1

−1
dz1dz2T

Born
C (z1)T

Born
C (z2)[K(z, z′, z1)+K(z, z′, z2)−I(z, z′, z1, z2)]

N(z′) =

∫ 1

−1
dz′dz′′TBornC (z1)T

Born
C (z2)K(z′, z1, z2);

I(z, z′, z1, z2) =
∞∑
l=0

(2l + 1)Pl(z)Pl(z
′)Pl(z1)Pl(z2)

From de�nition of the function K we readily obtain the following relation

I(z, z′, z1, z2) =
1

2

∫ +1

−1
dζK(z, z′, ζ)K(ζ, z1, z2)

If we go to the commonly used variables t = −2p2(1 − z), then we get
expressions that match (up to corrections∼ t/p2 negligible in the CNI region)
the expressions obtained in the framework of the representation of impact
parameters in Ref.[11]. We do not write them here explicitly because of their
bulkiness.
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Chapter 6

Conclusions

This work is devoted to problems related to the account of the Coulomb-
nuclear interference in hadron scattering.
We have formulated conditions at which di�erent amplitudes are physically
equivalent in correspondence with the degree of approximation.
We have calculated for the �rst time the terms of the second order which
are important as discussed above in selecting correct amplitudes. This result
holds at any energy.
Expressions (4.2) and (5.5) are the main result of this work. Their advan-
tage in comparison with similar formulas obtained in Refs [6], [11] with use
of approximate impact parameter representation is that they are obtained
on basis of exact and rigorously proved expansions in Legendre polynomials.
We thus have veri�ed the validity of formulas obtained in Refs [6], [11] at
ultra relativistic energies when | t | /s� 1.

So, they can be used for extraction of the parameter ρ from the high-
energy data (e.g. LHC) which plays an important role in discriminating
various models of strong interactions.
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Chapter 7

Appendix
Expansion of scattering amplitude
in Legendre polynomials and its
properties [12]

7.1 Introduction and properties

In this section we give some basic introduction to Legendre polynomials, as
the expansion of the amplitude in above paper is given in terms of these poly-
nomials. These polynomials can occur as a solution of the Legendre ODE,
as a consequence of the Rodrigues formula or originate as the complete set
of orthogonal functions in the [−1, 1] (Gram Schmidt orthogonalization).
These polynomials are obtained by their corresponding generating functions.

7.2 Physical Basis � Electrostatics

We here use a physical example to de�ne a generating functions and then get
then provide a method to obtain the Legendre function from it. Consider a
unit electric charge placed on the z-axis at z=a. As shown in Fig.(7.1), the
electrostatic potential of unit charge is

φ = 1/r1 (In Gaussian units) (7.1)

Writing the potential in terms of spherical coordinates r and θ.
Using the cosine law in Fig.(7.1), we get

φ = (r2 + a2 − 2arcosθ)−1/2 (7.2)
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Figure 7.1: Electrostatic potential. Unit charge displaced from origin.

7.3 Legendre Polynomials

For the case of r > a or, more precisely, r2 >| a2 − 2ar cos θ |. The eq.(7.2)
can be expanded in the powers of (a

r
):

Figure 7.2: Legendre polynomials P2(x), P3(x), P4(x), andP5(x).

φ =
∞∑
n=0

Pn(cos θ)(
a

r
)n (7.3)

Replacing x and t with cos θ and a/r , respectively, we have

g(t, x) = (1− 2xt+ t2)−1/2 =
∞∑
n=0

Pn(x)tn (7.4)

Eq.(7.4) is our generating function formula. Using binomial expansion it
can be shown that | Pn(cos θ) |≤ 1, which means that the series expansion
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Eq.(7.4) is convergent for | t |< 1. Indeed, the series is convergent for | t |= 1
except for | x |= 1.

7.4 Orthogonality

Legendre's di�erential equation can be written in the form:

d

dx
[(1− x2)P ′n(x)] + n(n+ 1)Pn(x) = 0 (7.5)

showing clearly that it is self-adjoint. If it satis�es certain boundary condi-
tions, then we know that the solutions of the above equation Pn(x) will be
orthogonal. For m 6= n∫ 1

−1
Pn(x)Pm(x)dx = 0,m 6= n (7.6)

∫ π

0

Pn(cosθ)Pm(cosθ)sinθdθ = 0,m 6= n (7.7)

which shows that Pn(x) and Pm(x) are orthogonal in the interval [−1, 1]. We
shall need to evaluate the integral (Eq. (7.6)) when n = m. Certainly it is
no longer zero. From our generating function,

(1− 2xt+ t2)−1 = [
∞∑
n=0

Pn(x)tn]2 (7.8)

Integrating from x =-1 to x =+1, we have∫ 1

−1

dx

1− 2tx+ t2
=
∞∑
n=0

t2n
∫ 1

−1
[Pn(x)]2dx (7.9)

the cross terms in the series vanish by means of Eq. (7.7). Using y = 1 −
2xt+ t2, dy = −2tdx, we obtain∫ 1

−1

dx

1− 2tx+ t2
=

1

2

∫ (1+t)2

(1−t)2

dy

y
=

1

t
ln

1 + t

1− t
(7.10)

Expanding this in a power series gives us

1

t
ln

1 + t

1− t
= 2

∞∑
n=0

t2n

2n+ 1
(7.11)
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Comparing power-series coe�cients of (Eq. (7.9) and Eq. (7.11)) , we must
have ∫ 1

−1
[Pn(x)]2dx =

2

2n+ 1
(7.12)

Combining (Eq. (7.7) with Eq. (7.12)) we have the orthonormality condition∫ 1

−1
[Pm(x)][Pn(x)]dx =

2δmn
2n+ 1

(7.13)

7.5 Expansion of Functions, Legendre Series

Legendre polynomials are orthogonal and forms a complete set Let the series,

∞∑
n=0

anPn(x) = f(x) (7.14)

converges in the mean in the interval [−1, 1]. The coe�cients an can be found
by multiplying the series by Pm(x) and integrating term by term. Using the
orthogonality property expressed in (Eq. (7.7) and Eq. (7.13)), we obtain

2

2m+ 1
am =

∫ 1

−1
f(x)Pm(x)dx (7.15)

We replace the variable of integration x by t and the index m by n. Then,
substituting into (Eq. (7.14)), we have

f(x) =
∞∑
n=0

2n+ 1

2
(

∫ 1

−1
f(t)Pn(t)dt)Pn(x) (7.16)

This expansion in a series of Legendre polynomials is usually referred to as
a Legendre series.
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